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Abstract. We discuss the applicability of the cutting angle method to global minimization of mar-
ginal functions. The search of equilibrium prices in the exchange model can be reduced to the
global minimization of certain functions, which include marginal functions. This problem has been
approximately solved by the cutting angle method. Results of numerical experiments are presented
and discussed.
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1. Introduction

Marginal functions, that is, functions of the form

ψ(p) = max
y∈a(p)

f (p, y), (1.1)

where a is a set-valued mapping, have been intensively studied by many researches
(see, for example, [11, 14, 16] and references therein).

Note, that the so-called max function:

ψ(p) = max
y∈Y

f (p, y) (1.2)

is the simplest example of a marginal function. Here Y can be considered as the im-
age of a constant mapping a. We assume that the set Y in (1.2) is finite dimensional,
infinite and compact.

Marginal functions arise in the study of many problems of mathematical eco-
nomics.

Global minimization of marginal functions (in particular, max functions) is a
very complicated problem. Indeed, almost all known methods of global minimiza-
tion require to compute values of the objective function many times. However, the
value of marginal function ψ of (1.1) at a point p can be found only by solving the
optimization problem

f (p, y) −→ max subject to y ∈ a(p),
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so the calculation of the value of ψ is very time consuming.
Recently the so-called cutting angle method for global optimization of Lipschitz

function has been developed (see [2, 6, 7, 23]). We need to compute only a few
values of the objective function at each iteration of the cutting angle method, so we
can hope that this method is suitable for minimizing some marginal functions.

In this paper we apply the cutting angle method to solving some problems of
global optimization, which arise in the theory of economic equilibrium. The object-
ive functions of these problems are not always Lipschitz, so we need to transform
objective functions in order to obtain Lipschitz continuity. Note that the data in
models of economic equilibrium often is not very precise. Thus, we can restrict
ourselves to the search of approximate solutions of corresponding problems of
global optimization. We show that the cutting angle method, which can find an
approximate solution fairly quickly, can serve for solving these problems.

Consider a market economy with m consumers (agents) and n goods. The con-
sumer j has a utility function Uj and a vector of initial endowments ωj . It has been
shown in [20] that, under some natural assumptions, a vector of equilibrium prices
of this model can be found as a solution of the following problem:

H(p) −→ min subject to p ∈ ri S =
{
p : pi > 0, i = 1, . . . , n;

∑
i

pi = 1

}
,

(1.3)

with H(p) = H1(p)−H2(p) where H1(p) and H2(p) are special marginal func-
tions (see Section 5). Problem (1.3) has been studied from various points of view
in [1] and [5]. The similar approach for Arrow–Debreu equilibrium model was
proposed in [21].

The equilibrium exists if and only if the value of problem (1.3) is equal to
zero. It is well known that the equilibrium does exist if the utility function Uj

is quasiconcave and ωj is a strictly positive vector for all j . If these conditions
hold, we need to solve problem (1.3) with the known value of global minimum. If
at least one of these conditions is not valid, problem (1.3) can serve for recognition
of the existence of the equilibrium.

The structure of this paper is as follows. In Section 2 we discuss problems,
which arise under minimization of marginal functions. In Section 3 we recall briefly
the cutting angle method and in Section 4 we recall the exchange model of eco-
nomic equilibrium. Section 5 provides a discussion of a reformulation of an equi-
librium problem as a special optimization problem. In Section 6, we study Lipschitz
continuity of the objective function of this optimization problem. Section 7 provides
a discussion of the calculation of equilibrium prices by the cutting angle method.
We record results of numerical experiments in this section. Appendix contains data,
which were used for numerical experiments.
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2. Minimization of marginal functions

Let a be a set-valued mapping transforming a set P into the set of all non-empty
subsets of a set Y . Consider a function f : P × Y → R. A function ψ defined on
P by

ψ(p) = sup
y∈a(p)

f (p, y) (2.1)

is called a marginal function. In this paper we assume that P and Y are closed
subsets of finite-dimensional spaces and images of the mapping a are compact
sets. Assume also that the function y �→ f (p, y) is upper semicontinuous for all
p ∈ P . Then the supremum in (2.1) is attained. Continuity, Lipschitz continuity
and directional differentiability of marginal functions have been intensively studied
(see, for example, [4, 11, 14, 16] and references therein).

A well-known example of marginal functions is delivered by a parametric prob-
lem of mathematical programming:

f (p, y) −→ max subject to gi(p, y) � 0 (i ∈ I ), hj (p, y) = 0 (j ∈ J ).

Here a(p) = {y : gi(p, y) � 0, (i ∈ I ), hj (p, y) = 0 (j ∈ J )}. It is assumed
that the set a(p) is nonempty and compact for all p ∈ P .

Marginal functions arise in the study of many problems of mathematical eco-
nomics. Assume, for example, that a is a production mapping of a producer, that
is, a(x) is the set of all outputs, which can be produced by the producer from
an input x. Let p be a price vector (that is a vector with positive coordinates).
Then the maximal profit π(x), which can be obtained by the producer, is equal to
(maxy∈a(x)[p, y]) − [p, x], where [u, v] is the inner product of vectors u and v.
The marginal function maxy∈a(x)[p, y] describes the revenues of the producer. A
different kind of marginal functions arises in the study of a consumer behaviour.
Assume that a consumer has a utility function U . Then the maximal utility, which
can be obtained by the consumer is

v(p) = max
y∈B(p)

U(y),

where B(p) is the set of vectors of goods, which are available for the consumer, if
there is a price vector p at the market.

Let φ(p) = g(ψ1(p), . . . , ψk(p)), where g : R
k → R and ψi, i = 1, . . . , k

are marginal functions and let P be a compact set. Consider the following problem
of global optimization:

φ(p) −→ min subject to p ∈ P. (2.2)

Many problems from various fields of mathematics and its applications can be
represented in form (2.2). We mention here only bilevel programming (see for
example [24] and references therein) and problems of economic equilibrium (see
[20]).



218 A.M. BAGIROV AND A.M. RUBINOV

Consider the simplest version of (2.2), namely the problem

ψ(p) −→ min subject to p ∈ P, (2.3)

where ψ is a marginal function defined by (2.1). A very special case of problem
(2.3), where the mapping a in (2.1) is constant: a(p) = Y for all p ∈ P is known
as a minimax problem. Thus the minimax problem has a form: to find a point
(p̃, ỹ) ∈ P × Y such that

f (p̃, ỹ) = min
p∈P max

y∈Y
f (p, y). (2.4)

If Y is finite, we have a discrete minimax problem, if Y is a compact infinite set,
we have a continuous minimax problem.

Discrete minimax problems have been studied by many authors (see, for ex-
ample [10, 17] and references therein). We consider here only continuous minimax
problems, which are much more complicated.

We mention three numerical methods, which were proposed for solving con-
tinuous minimax problems in the seventies and earlier: Arrow–Hurwicz method
(see [3, 15]), the net method (see [10]); and the method of extremal basis (see [9]).
Modern approaches to solving these problems can be found in the book [17] by
E. Polak. The main attention in this book is paid to the minimization of convex
functions of the form ψ(p) = maxy∈Y f (p, y). The net method and the method of
consistent approximation [17] can be applied for the search for local minima of ψ ,
when this function is non-convex. These methods are based on an approximation
of the given set Y by a finite set Y ′. Having such an approximation we can substi-
tute a continuous minimax problem for a sequence of discrete minimax problems
and then solve these problems by known algorithms (see, for example [10, 17].
These methods require to use large finite sets Y ′, hence we need to minimize the
maximum of a large number of functions.

The calculation of local minima of a non-convex marginal function ψ is very
time-consuming. Indeed, the application of a majority of known numerical methods
for local optimization is based on the calculation of the objective function and its
subgradients (in a certain sense) in many different points. Sometimes it is possible
to use only approximate values of the function and its subgraients, however, in
order to find an approximate value of the function φ at a point p̄ we need to find
an approximate solution of the problem

f (p̄, y) −→ max subject to y ∈ a(p̄). (2.5)

Thus the search for a local minimum of the function φ requires to solve (approx-
imately) problem (2.5) very often.

Note that as a rule the calculation of subgradients of a non-convex marginal
function is more complicated than the calculation of a value of this function. It
leads to the following conclusion: optimization methods, which are based on the
calculation both functions and its subgradients, as a rule are not applicable for the
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local minimization of non-convex marginal functions. Methods, which are based
only on calculation of values of the objective function (so-called derivative-free
methods), are more preferable.

Without any convexity assumptions a marginal function may have a lot of local
minimizers, so we need to use methods of global optimization for solving problem
(2.2). However, the majority of these methods (branch-and-bound, random search,
etc.) require very many objective function evaluations. So, these methods are not
applicable for minimization of marginal functions (and even for solving minimax
problems) if the dimension of the problem is sufficiently high. For global optimiz-
ation of marginal functions we need to find methods, which require a small amount
of objective functions evaluations. One of such methods is the so-called cutting
angle method, which uses only few function evaluations at each iteration. So we
can propose that the cutting angle method is applicable for the global minimization
of marginal functions.

3. Cutting angle method

Let I = {1, . . . , n}. Consider the space R
n of all vectors (xi)i∈I . We shall use the

following notations.

• xi is the i-th coordinate of a vector x ∈ R
n;

• if x, y ∈ R
n then x � y ⇐⇒ xi � yi for all i ∈ I ;

• if x, y ∈ R
n then x � y ⇐⇒ xi > yi for all i ∈ I ;

• R
n+ = {x = (x1, . . . , xn) ∈ R

n : x � 0};
• R

n++ = {x = (x1, . . . , xn) ∈ R
n : x � 0};

• 1 = (1, . . . , 1);
• [l, x] =∑n

i=1 lixi is the inner product of vectors l and x.

A function f defined on the cone R
n+ of all n-vectors with nonnegative coordinates

is called an IPH function if f is increasing (x � y �⇒ f (x) � f (y)) and
positively homogeneous of the first degree (f (λx) = λf (x) for all x � 0 and
λ > 0). The following result holds (see [23]).

THEOREM 3.1 Let f be a Lipschitz function defined on the unit simplex S =
{x ∈ R

n+ :
∑

i∈I xi = 1}. Then there exists a constant c > 0 such that for all c′ � c

the function x �→ f (x) + c′ (x ∈ S) is the restriction of a certain IPH function g

to S.

Thus the minimization of a Lipschitz function f over S is reduced to the min-
imization of an IPH function g over S. The minimization of a Lipschitz function
subject to linear constraints can be transformed to the minimization of another
Lipschitz function over the simplex (see [23] for details), hence the minimization
of a Lipschitz function subject to linear constraints is reduced to the minimization
of an IPH function over the simplex.
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The cutting angle method was proposed (see [2] and also [22]) for the minimiz-
ation of a so-called ICAR (increasing convex-along-rays) function defined on R

n+
over a compact subset of R

n+. We consider here only a version of this method, which
is suitable for the minimization of an IPH (increasing positively homogeneous of
degree one) function over the unit simplex. This version has been proposed and
discussed in detail in [6, 7]. It follows from monotonicity of an IPH function f that
f (x) � f (0) = 0 for all x ∈ R

n+. We assume in the sequel that f (x) > 0 for all
x �= 0. For x ∈ R

n+ we shall use the following notation: I (x) = {i ∈ I : xi > 0},
c/x is the vector with the following coordinates:

( c
x

)
i
=
{

c
xi

if i ∈ I (x);
0 if i /∈ I (x).

The cutting angle method is based on the following result (see [22] and references
therein).

THEOREM 3.2 (1) Let f : R
n+ → R be a function such that f (x) > 0 for all

x �= 0. Then f is IPH if and only if there exists U ⊂ R
n+ \ {0} such that

f (x) = max
l∈U

min
i∈I (l)

lixi , x ∈ R
n
+;

(2) Let x0 ∈ R
n+ \ {0} and l = f (x0)/x0. Then

min
i∈I (l)

lixi � f (x) for all x ∈ R
n
+ and min

i∈I (l)
lix

0
i = f (x0).

Let ek = (0, . . . , 0, 1, 0, . . . , 0) be the unit vector such that I (ek) = {k}. Clearly
f (ek)/ek = f (ek)ek (k = 1, . . . , n).

First we present the simplest version of the cutting angle method.

The cutting angle method for minimizing an IPH function over the unit
simplex

Step 0. (Initialization) Take points xk = ek, k = 1, . . . , n. Let lk = f (xk)/xk, k =
1, . . . , n. Define the function hn :

hn(x) = max
k�n

min
i∈I (lk)

lki xi = max
k�n

lkk xk

and set j = n.
Step 1. Find a solution x∗ of the problem

hj(x) −→ min subject to x ∈ S. (3.1)

Step 2. Set j = j + 1 and xj = x∗.
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Step 3. Compute lj = f (xj )/xj , define the function

hj(x) = max(hj−1(x), min
i∈I (lj )

l
j

i xi) ≡ max
k�j

min
i∈I (lk)

lki xi

and go to Step 1.

The convergence of the cutting angle method has been proved under very mild
assumptions (see [16], where the convergence of much a more general method was
established, and also [22]).

REMARK 3.1 The solution of the auxiliary problem (3.1) is the most difficult
part of the algorithm. The special method for the solution of this problem has been
developed in [6, 7]. We do not discuss this method here. Different approaches are
possible in lower dimensions ([2, 23]): in particular, the auxiliary problem can be
reduced to a mixed-integer linear programming problem, which can be solved by
standard optimization packages (for example, CPLEX).

REMARK 3.2 Only one value of the objective function f should be calculated at
each iteration.

REMARK 3.3 A more advanced version of the cutting angle method was pro-
posed in [7]. All approximate solutions of the problem (3.1) are considered in this
version. We shall use the advanced version in this paper, since it allows us to fasten
the search for a global minimizer (see [7] for details). The advanced version may
require a few calculation of the objective function at each iteration.

REMARK 3.4 Let

λj = min
x∈S hj (x) = hj(x

j+1).

It follows from Theorem 3.2 that hj(x) � f (x) for all x ∈ S. Hence

λj = min
x∈S

hj (x) � min
x∈S

f (x).

Thus λj is a lower estimate of the global minimum of f over S. Let µj = f (xj ). It
can be shown (see, for example [22] and references therein) that λj is an increasing
sequence and λj − µj → 0 as j → +∞. So we have a stopping criterion,
which enables us (at least theoretically) to obtain an approximate solution with
an arbitrary given tolerance.

REMARK 3.5 The cutting angle method can be considered as a special case of
many well-known algorithms (see [22] for a short survey of some of these al-
gorithms). However, the numerical implementation of the cutting angle method
has demonstrated that it works much better than many other versions of these
algorithms.
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4. The Equilibrium Model

We study the so-called exchange models of economic equilibrium. First we con-
sider a classical version of this model. The classical exchange model describes
a market, where n goods are circulated. Let I = {1, . . . , n}. There is a finite
number, say m, of economical agents, which are called consumers, at the market.
Let J = {1, . . . , m}. A consumer j ∈ J is described by a pair (Uj , ωj ), where Uj

is a utility function (objective function) of the consumer j and ωj ∈ R
n+ is a vector

of her initial endowments.
A state of economy is a vector X = (x1, . . . , xm) ∈ (Rn+)m. A state X is called

feasible if it belongs to the set

( = {X = (xj )j∈J :
∑
j∈J

xj � ω}, (4.1)

where

ω =
∑
j∈J

ωj (4.2)

is the vector of all products available on the market.
A vector p ∈ R

n+ \ {0} is called a price vector. Having a price vector p, the
consumer j can sell her initial endowment ωj and can buy a vector xj from the set

Bj (p) = {x ∈ R
n
+ : [p, x] � [p,ωj ]}.

This set is called the budget set of the consumer j .
Note that Bj (p) = Bj(λp) for all λ > 0, so we can assume without loss of

generality that the mapping Bj is defined only on the unit simplex S = {p ∈ R
n+ :∑n

i=1 pi = 1}. We shall denote the model under consideration by M:

M = {I, J, (Uj )j∈J , (ωj )j∈J }. (4.3)

A semi-equilibrium of the model M is a pair (p̄, X̄), where p̄ is a price vector and
X = (x̄j )j∈J is a feasible state, such that x̄j is a solution of the consumer problem:

Uj(xj ) −→ max subject to xj ∈ Bj (p̄). (4.4)

The vector p̄ is called equilibrium prices and the vector x̄j is called an equilibrium
state of the agent j .

It is well known that a semi-equilibrium exists if functions Uj are quasiconcave
and vectors ωj are strictly positive (see, for example, [13] and references therein).
We assume in the rest of this paper that

ωj � 0, j ∈ J.

We shall consider both models with quasiconcave Uj and without quasiconcave
Uj .
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Let (p̄, X̄) be a semi-equilibrium of the model M. Since X̄ is a feasible state,
the inequality

∑
j x̄

j � ω holds, where ω is defined by (4.2). A semi-equilibrium
(p̄, X̄) is called an equilibrium if

∑
j x̄

j = ω. It is well known (and easy to check),

that each semi-equilibrium (p̄, X̄) with p̄ � 0 is an equilibrium.
We accept the following

ASSUMPTION 4.1 There exists j ∈ J such that the utility function Uj is non-
satiated in the following sense: for each x ∈ R

n+ and each i ∈ I there exists λi > 0
such that Uj(x + λie

i) > Uj(x), where ei is the i-th unit vector.

Then each vector of equilibrium prices p̄ is strictly positive. Indeed, assume
that p̄i = 0. Let x̄j be an equilibrium state of the consumer j . Then the budget set
Bj(p) = {x : [p̄, x] � [p̄, ωj ]} of this consumer contains the ray {x̄j + λei : λ >

0}, hence there exists xj := x̄j +λiei ∈ Bj(p) such that Uj(xj ) > Uj(x̄j ), which
contradicts the definition of the semi-equilibrium. Thus Assumption 4.1 allows us
to consider only strictly positive equilibrium prices (therefore, an equilibrium is
guaranteed to exist by the above).

We also consider one more type of exchange models, namely a model of ex-
change with fixed budgets. In contrast with the classical version, it is assumed that
each agent j has a fixed budget, that is, a special sum of money dj , which does not
depend on market prices and ωj . The budget mapping Bj(p) should be replaced
for the mapping

B̃j (p) = {x ∈ R
n
+ : [p, x] � dj }, p �= 0. (4.5)

Having mappings B̃j (p), we can define the semi-equilibrium and equilibrium in
this model in the same way as in the classical case. Note that in contrast with the
classical model, B̃j (λp) �= λB̃j (p) for λ > 0 so we need to consider mappings B̃j

on the cone R
n+ \ {0}. The existence results for the model with fixed budgets are

similar to those for the classical model. If Assumption 4.1 holds then equilibrium
prices are strictly positive.

REMARK 4.1 It is known [13, 18] that an equilibrium for a model with fixed
budgets and positively homogeneous utility functions can be found by solving a
convex programming problem. However this does not hold if utility functions are
not positively homogeneous. In this paper we consider a search for an economical
equilibrium as an example of application of the cutting angle method. From this
point of view models with fixed budget is of a special interest since they can
be reduced to a problem of global optimization, which is different from that for
classical exchange models.

5. Equilibrium Prices as a Solution of a Special Optimization Problem

It is not hard to formulate a bilevel problem such that its solution set coincides
with the set of equilibrium prices. Let Assumption 4.1 hold. Consider the set ri S =
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{p � 0 : ∑i∈I pi = 1} = S ∩ R
n++. Assume for the sake of simplicity that the

utility functions Uj are strictly concave. Then the consumer’s problem

Uj(xj ) −→ max subject to xj ∈ Bj (p) (5.1)

has a unique solution for each p ∈ ri S. Denote this solution by xj (p). Consider a
function

γ (p) =
∥∥∥∥∥∥
∑
j∈J

xj (p)− ω

∥∥∥∥∥∥
Clearly γ (p) � 0 and γ (p) = 0 if and only if p is a vector of equilibrium
prices. Thus equilibrium prices can be found as a solution of the following bilevel
problem:∥∥∥∥∥∥

∑
j∈J

xj (p)− ω

∥∥∥∥∥∥ −→ min subject to p ∈ ri S (5.2)

where xj (p) is a solution of problem (5.1). The optimal value of problem (5.2) is
known (and equal to zero). However, this problem is very complicated. Note that
the set-valued mapping Bj is not Lipschitz on ri S. (See, for example, [4] for the
definition of Lipschitz set-valued mappings.) So we cannot hope that the mappings
xj (p) (j ∈ J ) and the function γ (p) are Lipschitz for an arbitrary functions Uj .
Hence we cannot guarantee that problem (5.2) can be solved by the cutting angle
method.

We now consider a certain different type of optimization problems, which can
serve for the search of economic equilibrium. Such problems were suggested in
[20]. For each p ∈ ri S consider sets

A∗(p) = {X = (xj )j∈J : xj ∈ Bj (p) (j ∈ J )} ≡
∏
j∈J

Bj (p) (5.3)

and

A(p) = {X = (xj )j∈J ∈ A∗(p) :
∑
j∈J

xj � ω}. (5.4)

Both sets A∗(p) and A(p) are compact for p ∈ ri S, so the following functions are
well defined:

H1(p) = max
X=(xj )∈A∗(p)

∑
j∈J

Uj (xj ) =
∑
j∈J

max
xj∈Bj (p)

Uj (xj ), p ∈ ri S (5.5)

and

H2(p) = max
X=(xj )∈A(p)

∑
Uj(xj ), p ∈ ri S. (5.6)

Let H(p) = H1(p) − H2(p). Clearly H(p) � 0. The following assertion holds
(see [20]).
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LEMMA 5.1 Let Assumption 4.1 hold and let p̄ ∈ ri S. The equality H(p̄) = 0 is
valid if and only if p̄ is a vector of equilibrium prices.

Thus in order to find a vector of equilibrium prices we need to solve the follow-
ing problem of global optimization:

H(p) −→ min subject to p ∈ ri S. (5.7)

The objective function of this problem is the difference of two marginal functions
H1 and H2. If the equilibrium exists then the minimal value of this problem is
known and equal to zero.

We accept the following assumption.

ASSUMPTION 5.1

(1) For each j ∈ J there exists a point aj � 0 such that the utility function
Uj is twice continuously differentiable on the set aj + R

n++ and

[∇2Uj(xj )yj , yj ] < 0 for all xj ∈ aj + R
n
++ and yj �= 0. (5.8)

(2) The utility function Uj (j ∈ J ) is increasing in the following sense: if
x1 � x2 then Uj(x1) > Uj(x2).

(3) limx→+∞Uj(x) = +∞ for each j ∈ J .

It follows from (5.8) that Uj is a strictly concave function. If Assumption 5.1
holds then for each p � 0 and each j ∈ J the consumer’s problem

Uj(x) −→ max subject to x ∈ Bj(p) ≡ {x � 0 : [p, x] � [p,ωj ]} (5.9)

has a unique solution xj (p) and [p, xj (p)] = [p,ωj ]. Hence, the problem∑
j∈J

Uj (xj ) −→ max subject to X = (xj )j∈J ∈ A∗(p),

which serves for the definition of the function H1, has a unique solution X(p) =
(xj (p))j∈J . The problem∑

j∈J
Uj (xj ) −→ max subject to X = (xj )j∈J ∈ A(p), (5.10)

which serves for the definition of H2 also has a unique solution X̃(p) = (x̃j (p))j∈J .
It has been proved in [21] that the function H1 is Frechet differentiable with the

piece-wise C1 gradient mapping ∇H1. We have

∇H1(p) =
∑
j

1

pij

(
Uj(xj (p))

xij

)
(ωj − xj (p)), (5.11)
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where ij is an arbitrary index belonging to I j (p) := {i′ : x
j

i′(p) > 0}. The
function H2 is directionally differentiable and, under some additional assumptions,
also Frechet differentiable with the piece-wise C1 gradient mapping. Assume that
there exist j ∈ J , ij ∈ I and a sequence p(k) ∈ ri S such that ij ∈ I j (p(k)) for all k
and (p(k))ij → 0 as k →+∞. It follows from (5.11) that

‖∇H1(p)‖ → +∞ as k →+∞.

So we cannot hope that H(p) is a Lipschitz function on the set ri S = {p ∈ S :
p � 0} for all quasiconcave utility functions Uj and we cannot guarantee that
the global minimizer of H over the simplex S can be found by the cutting angle
method.

In order to get a Lipschitz function we shall slightly change the definition of
the function H . First we note that the function H2 is bounded on ri S. Indeed, let
p ∈ ri S and let X = (xj ) ∈ A(p). Then

∑
j∈J x

j � ω, hence xj � ω for all
j ∈ J . Since the utility functions Uj are increasing, we have

H2(p) = max
X∈A(p)

∑
j∈J

Uj (xj ) � C,

where

C =
∑
j∈J

Uj (ω). (5.12)

However the function H1 can be unbounded on S. Since we are interested in the
global minimum of the function H = H1 −H2 we can throw off points where the
function H1 is very large. For this purpose we consider the function

L(p) = min(H(p), d), (5.13)

where d is an arbitrary positive number, which is bigger than a global minimum
of the function H . Clearly global minimizers of functions H and L coincide so if
the equilibrium exists, then a point p ∈ ri S is an equilibrium prices if and only if
L(p) = 0.

Thus a vector of equilibrium prices can be found as a solution of the following
problem:

L(p) −→ min subject to p ∈ ri S. (5.14)

6. Lipschitz Continuity of the Function L.

In this section we shall check that the function L is Lipschitz. Let E = {p ∈ S :
H(p) � d}. It is sufficient to verify that L is Lipschitz on the set E. First we prove
the following simple Proposition.
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PROPOSITION 6.1 The function H1 is bounded on the set E.

Proof: If p ∈ E then H1(p) � H2(p)+d � C+d where C is defined by (5.12). �
COROLLARY 6.1 There exists a vector a ∈ R

n++ such that xj (p) � a for all
p ∈ E and j ∈ J .

Indeed, Uj(x(p)) � H1(p). So Proposition 6.1 and Assumption 5.1(3) imply
the boundness of the set {xj (p) : p ∈ E, j ∈ J }.

We need the following theorem which is a special case of a general result from
[19]. (This special case and its relation with the mentioned general result were
discussed in [21].)

THEOREM 6.1 Let P∗ be an open subset of a finite dimensional space and p ∈
P∗. Let x∗(p) be a solution of the following parametric convex programming prob-
lem:

T (x) −→ max

subject to

x ∈ R
n, [ak, x] � bk (k ∈ K), [p,Arx − hr] � 0 (r ∈ R), (6.1)

where K and R are finite sets, ak (k ∈ K), hr (r ∈ R) are vectors and Ar (r ∈ R)

are matrices. Assume that T is a twice continuously differentiable concave function
defined on an open set ( such that

[∇2T (x∗(p))y, y] < 0 for all y �= 0.

Assume also that the Mangasarian-Fromovitz constraint qualification holds at the
point x∗(p), that is, there exists y ∈ R

n such that

[ak, y] < 0 if k ∈ K(x∗(p)) and [p,Ary] < 0 if r ∈ R(x∗(p)),

where

K(x∗(p)) = {k ∈ K : [ak, x∗(p)] = bk},
R(x∗(p)) = {r ∈ R : [p,Arx∗(p)− hr] = 0}.

Then the function x∗(p) is piece-wise continuously differentiable near the point p.
In particular, x∗(p) is a locally Lipschitz function near the point p.

In order to apply this theorem, we need to consider an open set P∗ ⊃ S such
that [p,ωj ] > 0 for all p ∈ P∗ and j ∈ J . Such a set exists since ωj � 0 for all
j ∈ J . For p ∈ P∗ consider the following two optimization problems.
Problem P1:

Uj(x) −→ max subject to [p, x] � [p,ωj ], 0 � x � a,
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where a is a vector from Corollary 6.1. Problem P1 has a unique solution x
j
∗ (p).

Problem P2:∑
j∈J

Uj (xj ) −→ max subject to
∑
j∈J

xj � ω, xj � 0, [p, xj ] � [p,ωj ] (j ∈ J )

This problem has a unique solution X̃∗(p) = (x̃
j
∗ (p))j∈J .

PROPOSITION 6.2 (1) For each p ∈ P∗ the Mangasarian–Fromovitz constraint
qualification holds for problem P1 at the point xj

∗ (p).
(2)For each p ∈ P∗ the Mangasarian–Fromovitz constraint qualification holds for
problem P2 at the point X̃∗(p).

We leave the simple but cumbersome proof of this proposition to the reader.

PROPOSITION 6.3 Let

H∗(p) =
∑
j∈J

Uj (xj
∗ (p))−

∑
j∈J

Uj (x̃j
∗ (p)). (6.2)

Then the function H∗ is locally Lipschitz on the set P∗.

Proof: It follows from Theorem 6.1 and Proposition 6.2 a that functions x
j
∗ (p)

and x̃
j
∗ (p) are locally Lipschitz. Functions Uj are locally Lipschitz as well. Hence

H∗(p) is locally Lipschitz. �
COROLLARY 6.2 The function H∗(p) is Lipschitz on the compact set S.

THEOREM 6.2 The function L defined by (5.13) is Lipschitz on the simplex S.

Proof: It is sufficient to prove that the function H is Lipschitz on the set E = {p ∈
S : H(p) � d}. Since xj (p) � a for p ∈ E (see Corollary 6.1), it follows that
xj (p) = x

j
∗ (p) for p ∈ E. We also have Xj(p) = X

j
∗(p) for all p ∈ S. Hence

L(p) = H(p) = H∗(p) for p ∈ E. The result follows from Corollary 6.2. �
7. The Calculation of Equilibrium Prices by the Cutting Angle Method

In this section we discuss results of numerical experiments, which were carried out
in order to find an approximate equilibrium prices or to verify that the equilibrium
does not exist. The problem (5.14):

L(p) −→ max subject to p ∈ ri S

has been solved by the cutting angle method.
First we give some remarks.
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1. We consider a search of an economical equilibrium as an example of applic-
ations of the cutting angle method to approximate global optimization of a
complicated function, which is the difference of two marginal functions. Cur-
rently the developed approach can mainly be used for research purposes. We
hope that the further development of the cutting angle method will allow one
to use this approach for many real problems of economic equilibrium.

2. Assume that the equilibrium exists. We have L(p) = min(H(p), d), so actu-
ally we are looking for a global minimum of the function H , which is equal
to zero. We also use the function H for determining the precision of results
of calculations. This function is defined with the help of utility functions Uj ,
which describe the preferences of agents. Note that the function ρjUj with
ρj > 0 and function Uj describes the same preferences (see [20] for a cor-
responding discussion). Thus if we replace the function H for the function
λH with arbitrary λ, we obtained the same approximate global minimizers,
however the measure of the precision will be changed. In order to avoid this
situation, we need to consider only functions Uj , which are normalized in a
certain sense.
All numerical experiments were carried out with utility functions of the form

(∗) Uj (x) = cj
n∏

i=1

(xi + bi)
α
j
i .

Since H = H1 − H2 and both H1 and H2 are defined by maximization of the
sum

∑
j∈J Uj(x), we consider the following normalization of function H :∑

j∈J
cj = 1. (7.1)

3. The cutting angle method is suitable for the search of approximate solution
of a global optimization problem. If there exists the equilibrium of the model
under consideration, then the optimal value of the normalized function H is
equal to zero. We search for vectors p such that H(p) ≈ 0.001 ÷ 0.003.
Assume that we consider a model, for which the existence of the equilibrium
are not proved and we want to learn whether the equilibrium exists. Recall
(see Section 3) that the cutting angle method produces the lower estimates λj

of the global minimum. If λj > 0 for some j , then the equilibrium does not
exist.

4. We used the exact penalty method for solving internal problems, which are
problems of convex programming (maximization of a concave function subject
to linear constraints). Thus, the exact penalty functions have been constructed;
for their minimization we used the so-called discrete gradient method ([5]).
Since the precision of the results obtained by the cutting angle method is
approximately 0.001÷0.003, internal problems were solved with the precision
10−4.
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5. We used a computer IBM Pentium-S CPU 150 MHz. Problems with n = 4
and m = 8 were mainly considered. It takes approximately 15–18 minutes to
find a solution of such a problem with the precision 0.001÷ 0.003. Results of
numerical experiments show that the solution of internal problems takes the
main part of CPU time.
Our aim is to show that the cutting angle method can be successfully applied
for solving the problem (5.14). Using more effective methods of convex optim-
ization for solving internal problems and more iterations of the cutting angle
method we can find a more precise solution of problem (5.14).

(1) Classical exchange models with concave utility functions

First we consider a classical exchange model such that Assumption 4.1 and
Assumption 5.1 hold. Then the equilibrium does exist, so the value of problem
(5.14) is known and equal to zero. Since the function L is Lipschitz over the unit
simplex, the cutting angle method can be applied.

EXAMPLE 7.1 Consider the economical system with 8 consumers and 4 goods.
The utility functions are defined as follows:

Uj(xj ) = cj

4∏
i=1

(x
j

i + b
j

i )
α
j
i ,

4∑
i=1

α
j

i = 0.8, α
j

i � 0,

i = 1, . . . , 4, j = 1, . . . , 8. (7.2)

Vectors αj = (α
j

1 , α
j

2 , α
j

3 , α
j

4 ) and bj = (b
j

1 , b
j

2, b
j

3 , b
j

4), j = 1, . . . , 8 are the
rows of the matrices A1 and B1, respectively. Vectors ωj, j = 1, . . . , 8 are rows of
matrix (1. Coefficients cj , j = 1, . . . , 8 are coordinates of the vector c1. Matrices
A1, B1,(1 and vector c1 can be found in Appendix.

Numerical results for Example 7.1. The point p = (0.3333, 0.3102, 0.0001,
0.3564) with H(p) = 0.0018 was found by the cutting angle method after 18
iterations. It takes 22 objective function evaluations.

EXAMPLE 7.2 We again consider the same economical system. Utility functions
have the same form with the same vector of coefficients c1 and the same matrix B1.
However coefficients α

j

i are defined in different way. We assume now that

4∑
i=1

α
j

i = 1, α
j

i � 0, i = 1, . . . , 4, j = 1, . . . , 8.

Vectors αj = (α
j

1 , α
j

2 , α
j

3 , α
j

4 ), j = 1, . . . , 8 are the rows of the matrix A′1, which
is in Appendix.
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Numerical results for Example 7.2. The point p = (0.2852, 0.3867, 0.3280, 0.0001)
with H(p) = 0.0026 was found by the cutting angle method after 17 iterations. It
takes 21 objective function evaluations.

(2) Exchange model with fixed budgets and concave utility functions

Consider a model with fixed budgets such that Assumption 4.1 and Assumption
5.1 hold. We now use the approach similar to that for the classical model. Let
p ∈ R

n++. Consider set-valued mappings

Ã∗(p) = {X = (xj )j∈J : xj ∈ B̃j (p), (j ∈ J )},

Ã(p) =

X = (xj )j∈J ∈ Ã(p) :

∑
j∈J

xj � ω


 ,

where B̃j defined by (4.5). Let H̃ (p) = H̃1(p)− H̃2(p), (p ∈ R
n++), where

H̃1(p) =
∑
j∈J

max
xj∈Bj

Uj (xj ), H̃2(p) = max
X=(xj )j∈J ∈A(p)

∑
j∈J

Uj(xj ),

(p ∈ R
n
++).

Further, let L̃(p) = min(H̃ (p), d), where d is an arbitrary positive number. The
same argument as in Section 5 demonstrates that a vector of equilibrium prices can
be found as a solution of the problem:

L̃(p) −→ max subject to p ∈ R
n
++. (7.3)

In order to apply the cutting angle method we need to transform this problem to
a problem with a simplicial constraint. For this purpose we introduce constraints
pi � M where M is a sufficiently large number. (It is assumed that there exist a
vector p̄ of equilibrium prices such that p̄i � M for all i ∈ I .) Consider the set

D =
{
p ∈ R

n
++ :

∑
i∈I

pi � nM

}
.

Clearly this set contains the set {p : pi � M, i = 1, . . . , n}. Let t = nM. Adding
a new variable pn+1 and replacing pi/t by qi we transform the set D to the unit
simplex S ⊂ R

n+1+ .

EXAMPLE 7.3 Consider the economical system of Example 7.2. It is assumed
now that each consumer j has the fixed budget dj and her budget set B̃j (p) has the
following form

B̃j (p) = {x ∈ R
n
+ : [p, x] � dj }, j = 1, . . . , 8.

Vector d1 = (d1, . . . , d8) can be found in Appendix.
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Numerical results for Example 7.3. The point p = (0.3707, 0.0203, 0.2030,
0.2030) with H(p) = 0.0015 was found by the cutting angle method after 5
iterations. It takes 24 objective function evaluations. Note that

∑4
i=1 pi < 1.

(3) Classical exchange model with not necessarily concave utility functions

The existence of the equilibrium in classical model can be proved if utility
functions Uj are quasiconcave. If at least one of these functions is not quasicon-
cave we cannot guarantee that the equilibrium exists. However, we also cannot
guarantee that the equilibrium does not exist. In order to check the existence of the
equilibrium we can solve problem (5.14). If the value of this problem is equal to
zero then the equilibrium exists and a global minimizer of the function L is a vector
of equilibrium prices. Otherwise, the equilibrium does not exist. Some numerical
experiments have been carried out in order to check the existence of equilibrium.
We consider utility functions, which can be represented as the maximum of two
concave functions. (Functions of such structure arise when indivisible goods are
considered.)

We now describe numerical experiments which were carried out.

1. A number of models with two goods and two consumers has been examined.
Each consumer has a utility functions, which is the maximum of two functions
of the form (*). Coefficients cj and bi were chosen at random. Coefficients α

j

i

were chosen also at random, however it is assumed that either
∑

i α
j

i = 1
or
∑

i α
j

i = 0.8. A model with three goods and three consumers, which
have utility functions of the same form with chosen at random coefficients,
also has been examined. Numerical experiments showed that all models under
consideration possess equilibrium. These results allow us to consider the fol-
lowing conjecture: if the number of goods is equal to the number of consumers
and a utility function of each consumer is the maximum of two functions, for
which Assumption 4.1 and Assumption 5.1 hold, then the classical exchange
model has an equilibrium. This conjecture was discussed with Professor J.-M.
Bonnisseau, who suggested the following counter-example.

EXAMPLE 7.4 (J.-M. Bonnisseau, [8]). Consider a classical exchange model with
two goods and two consumers. Utility functions Uj and vectors ωj (j =1,2) of
consumers have the following form:

U 1(x1) =
√
(x1

1 + 1)(x1
2 + 1), ω1 = (4, 4);

U 2(x2) = max((x2
1 + 1)1/3(x2

2 + 1)2/3, (x2
1 + 1)2/3(x2

2 + 1)1/3), ω2 = (4.4).

The demand of the consumers can be explicitly calculated. This calculations showed
that an equilibrium does not exist.
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Numerical experiments, based on the approach suggested in this paper, also
confirmed that the model under consideration and also some similar models have
no equilibrium.

Nevertheless our numerical experiments which were performed by a random
choice of coefficients show that there exists many models, which have the described
above form and possess an equilibrium.
2 A model with two products and three consumers has been examined. Each

consumer has a utility function, which is the maximum of two functions of the
form (*) with chosen at random coefficients. This model has no equilibrium,
however each its submodel with two consumers possesses an equilibrium.

We now present one of the corresponding examples.

EXAMPLE 7.5 Consider two economical systems, one of them has 3 consumers
and 2 goods, the other has 3 consumers and 3 goods. Assume the consumer j has
a utility function Uj :

Uj(xj ) = max{Uj1(xj ), Uj2(xj )}, j = 1, 2, 3,

where

Ujk(xj ) = ckj

m∏
i=1

(x
j

i + b
jk

i )α
jk
i , m = 2 or 3,

m∑
i=1

α
jk

i = 1, α
jk

i � 0, i = 1, . . . , m, j = 1, 2, 3, k = 1, 2.

For the first system vectors αj = (α
j1
1 , α

j1
2 , α

j2
1 , α

j2
2 ), bj = (b

j1
1 , b

j1
2 , b

j2
1 , b

j2
2 )

and ωj, j = 1, 2, 3 are the rows of matrices A3, B2 and (2, respectively, which
can be found in Appendix. Coefficients (c1

1, c
2
1, c

1
2, c

2
2, c

1
3, c

2
3) are coordinates of the

vector c2 (see Appendix).
For the second system vectors

αj = (α
j1
1 , α

j1
2 , α

j1
3 , α

j2
1 , α

j2
2 , α

j2
3 ), bj = (b

j1
1 , b

j1
2 , b

j1
3 , b

j2
1 , b

j2
2 , b

j2
3 )

and wj, j = 1, 2, 3 are the rows of matrices A3, B3 and (3, respectively (see
Appendix). Coefficients (c1

1, c
2
1, c

1
2, c

2
2, c

1
3, c

2
3) are coordinates of the vector c2.

First we describe our approach for solving internal problems.
Note that the function H1 has the form

H1(p) =
∑
j∈J

max
xj∈Bj (p)

Uj (xj ) =
∑
j∈J

max
xj∈Bj (p)

max{Uj1(xj ), Uj2(xj )}

=
∑
j∈J

max

{
max

xj∈Bj (p)
Uj1(xj ), max

xj∈Bj (p)
Uj2(xj )

}
, p ∈ ri S.
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Hence, we can find the value H1(p) of the function H1 at a point p by solving
the convex programming problems:

Uji(xj )→ max, xj ∈ Bj (p), j = 1, 2, 3, i = 1, 2,

We also have for p ∈ ri S:

H2(p) = max
X=(xj )∈A(p)

∑
Uj(xj ) = max

X=(xj )∈A(p)

3∑
j=1

max{Uj1(xj ), Uj2(xj )}

= max
i1,i2,i3=1,2

max
X=(xj )∈A(p)

(U 1i1(x1)+ U 2i2(x2)+ U 3i3(x3)). (7.4)

In order to find the value H2(p) of the function H2 at the point p we consider all
possible combinations:

Ū (X) = U 1i1(x1)+ U 2i2(x2)+ U 3i3(x3), i1, i2, i3 = 1, 2.

Then we solve the convex programming problems :

Ū (X)→ max, X ∈ A(p),

and calculate H2(p) by (7.4).
Solving problems (5.14) for the described models, we found that the first eco-

nomic system does not possesses the equilibrium. However, all its subsystems
consisting of 2 consumers and 2 goods have the equilibrium. The second system
also has the equilibrium.

8. Appendix

In this Appendix we report the data, which were used for numerical experiments.
Examples 8.1–8.3

A1 =




0.05205 0.35366 0.24230 0.15199
0.23562 0.08699 0.30802 0.16937
0.25335 0.17358 0.10888 0.26420
0.09515 0.33689 0.18525 0.18271
0.21114 0.13245 0.32138 0.13503
0.25861 0.14220 0.14025 0.25893
0.13280 0.32224 0.13540 0.20955
0.18448 0.18196 0.33593 0.09763



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A′1 =




0.06506 0.44207 0.30288 0.18999
0.29452 0.10874 0.38502 0.21171
0.31668 0.21697 0.13610 0.33025
0.11893 0.42112 0.23156 0.22839
0.26393 0.16556 0.40172 0.16879
0.32326 0.17775 0.17532 0.32367
0.16601 0.40281 0.16925 0.26194
0.23060 0.22745 0.41991 0.12204




B1 =




0.28793 0.06658 0.23274 0.20954
0.24972 0.22317 0.10869 0.29905
0.12910 0.22351 0.19709 0.20271
0.28129 0.05614 0.27284 0.17613
0.26395 0.16693 0.16528 0.28286
0.09218 0.19242 0.20010 0.20564
0.25339 0.06827 0.29563 0.12479
0.25775 0.15915 0.20537 0.24766




(1 =




0.22732 0.17509 0.41652 0.27501
0.24565 0.18920 0.45010 0.29718
0.03812 0.02936 0.06985 0.04612
0.20445 0.15747 0.37461 0.24734
0.25905 0.19953 0.47466 0.31340
0.07548 0.05814 0.13831 0.09132
0.17749 0.13670 0.32521 0.21472
0.26728 0.20586 0.48973 0.32334




c1 = (0.08402, 0.13197, 0.19386, 0.02938, 0.16941, 0.17038, 0.02761, 0.19336)

d1 = (20.80734, 32.68218, 48.00851, 7.27500)

Example 8.4

A2 =

 0.12829 0.87171 0.73035 0.26965

0.59343 0.40657 0.22022 0.77978
0.61452 0.38548 0.64521 0.35479



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B2 =

 0.28793 0.06658 0.24972 0.22317

0.12910 0.22351 0.28129 0.05614
0.26395 0.16693 0.09218 0.19242




(2 =

 0.22732 0.17509

0.24565 0.18920
0.03812 0.02936




c2 = (0.10786, 0.16941, 0.24885, 0.03771, 0.21747, 0.21870),

A3 =

 0.08032 0.54576 0.37392 0.37362 0.13794 0.48843

0.47284 0.32395 0.20321 0.15414 0.54576 0.30010
0.31752 0.19918 0.48330 0.47796 0.26282 0.25922




B3 =

 0.28793 0.06658 0.23274 0.24972 0.22317 0.10869

0.12910 0.22351 0.19709 0.28129 0.05614 0.27284
0.26395 0.16693 0.16528 0.09218 0.19242 0.20010




(3 =

 0.22732 0.17509 0.41652

0.24565 0.18920 0.45010
0.03812 0.02936 0.06985



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